Collaboration yields new understanding of nano properties needed to build new materials

Author: Gene Stowe

A collaboration between Jon Camden, an associate professor in the Department of Chemistry and Biochemistry, David Masiello of the University of Washington, and Philip Rack of the University of Tennessee has directly observed hybridized magnetic resonances in plasmonic nanostructures for the first time. The achievement is a critical step toward developing materials that interact with light in unexpected ways and that may someday cloak military equipment throughout the visible spectrum or underlie future PV technology optimized to capture energy from the sun’s infrared rays. 

Read More

Notre Dame researchers find transition point in semiconductor nanomaterials

Author: Gene Stowe

Collaborative research at the University of Notre Dame has demonstrated that electronic interactions play a significant role in the dimensional crossover of semiconductor nanomaterials. The laboratory of Masaru Kuno, professor of chemistry and biochemistry, and the condensed matter theory group of Boldizsár Jankó, professor of physics, have now shown that a critical length scale marks the transition between a zero-dimensional, quantum dot and a one-dimensional nanowire.

Read More